The Gantry-type 3D Laser Cutting Robot Workstation is a high-precision, efficient cutting solution. It features an inverted six-axis robot mounted on a gantry structure, expanding the working range and enabling complex curved surface cutting. The 3D laser cutting head, equipped with anti-collision and anti-tangling systems, can achieve high-flexibility rotary cutting with a large working radius. The workstation supports various worktable types and fixtures for flexible production. It is widely used in automotive, new energy, and smart home appliance industries, offering high precision, large cutting speed, and configurable laser power.
Structure and Detailed Description of Gantry-type 3D Laser Cutting Robot Workstation (Including 3D Laser Cutting and Inverted Six-axis Robot)
1. Gantry Structure
Beam and Legs: The gantry consists of two vertical legs and a horizontal beam, providing a stable platform for the robot to ensure precision and stability during the cutting process.
Support Guide Rails: Fixed on the front side of the gantry, the support guide rails are used for the six-axis robot’s left-right sliding connection through its guide slots, offering positioning and guidance for the robot’s movement.
2. Inverted Six-axis Robot
Mounting Method: The six-axis robot is mounted upside down on the middle of the gantry beam, which expands the robot’s working range.
Drive Mechanism: The robot slides left and right on the gantry through a drive mechanism, which includes a rack fixed on the top surface of the gantry and a drive gear meshing with it, driven by a rotary motor.
Functional Features: The six-axis robot is characterized by high precision, high rigidity, and high flexibility, enabling complex curved surface cutting.
3. 3D Laser Cutting Head
Mounting Method: The 3D laser cutting head is installed on the end-connection plate of the six-axis robot.
Functional Features: Equipped with a dedicated 3D laser cutting head and anti-collision, anti-tangling systems, the cutting head can achieve 360-degree high-flexibility rotary cutting with a working radius of up to 2 meters. In the event of a collision, the cutting head can quickly reset to minimize cable tangling.
Auxiliary Function: The cutting head is connected to an air pipe, through which an external air source provides high-pressure gas to blow away the molten material generated during laser cutting.
4. Worktable and Exchange Platform
Worktable Base: The worktable base is equipped with linear guide rails.
Exchange Platform: The bottom of the exchange platform is fitted with sliders that cooperate with the linear guide rails, allowing the platform to slide along them. The platform is equipped with first and second fixtures for holding workpieces to be cut.
Drive Mechanism: Between the exchange platform and the worktable base, there is an exchange drive mechanism that enables the platform’s reciprocating motion through a servo motor and rack-and-pinion transmission.
5. Control System
Control Cabinet: The control cabinet includes a controller and an enclosure. The controller is connected to a control switch group and a CCD display. The control switch group is connected to a height adjuster, which is linked to the six-axis robot.
Laser Source: Inside the control cabinet, there is a laser source connected to the cutting head via an optical fiber. The laser source, optical fiber, and cutting head are all wrapped with water pipes, forming a closed loop with a water chiller.
6. Other Auxiliary Equipment
Water Chiller: A water chiller is located on one side of the gantry to cool the laser source and cutting head.
Micro-adjustment Mechanism: In the end-cap support and fixing mechanism, the support and fixing seat is connected to a micro-adjustment mechanism. By manually rotating the handwheel, the distance between the support and fixing seat and the workpiece can be adjusted.
Technical Advantages of 3D Laser Cutting and Inverted Six-axis Robot
High-Precision Cutting: 3D laser cutting technology enables high-precision cutting, suitable for processing complex shapes and curved surfaces.
Efficient Processing: The inverted six-axis robot expands the working space, improving processing efficiency, especially for large and extra-long workpieces.
Flexible Production: The workstation supports various mounting methods and customized fixtures, meeting the flexible processing needs of different industries for small and medium batch sizes and a variety of products.
This gantry-type 3D laser cutting robot workstation is widely used in high-end fields such as automotive manufacturing, new energy, smart wearables, and intelligent home appliances.
Parameter Tables
Gantry-type 3D Laser Cutting Robot Workstation Parameters
The six-axis robot laser welding workstation is a highly automated system designed for welding various alloy materials, including aluminum, copper, nickel, stainless steel, and titanium alloys. It integrates a six-axis robot for flexible movement, a laser for high-precision welding, and a positioner for accurate workpiece positioning. The workstation offers high efficiency and quality in welding…
Planetary gearboxes for automated equipment come in various types, including different output shaft configurations (output shaft type, flange type, and right-angle type), gear stages (single-stage and multi-stage), and lubrication methods (oil-immersed and grease-lubricated). Their structure mainly consists of the gear system (sun gear and planet gears), planet carrier, ring gear, and input/output shafts. The manufacturing…
Automated production equipment for laser welding of positive and negative electrode connection tabs in lithium battery packs is an essential tool in modern lithium battery production. By leveraging high-precision laser welding technology, automated production processes, and stringent quality control, it ensures the high-quality production of lithium battery modules. This equipment is suitable for various types…
Gear reducer motors are essential in automated equipment. They come in various types, such as cylindrical, bevel, planetary, cycloidal, worm, and helical gears, each with unique features and applications. Manufacturing involves precise processes like housing processing, gear machining, bearing installation, assembly, painting, and finished product testing. These motors are used in industries like general manufacturing,…
Photovoltaic (PV) technology is advancing rapidly, with various types of solar panels offering different efficiencies. Monocrystalline silicon panels lead in efficiency (up to 25% in labs), while polycrystalline silicon and thin-film panels like CIGS and perovskite also show promise. New trends in PV production include stress-free interconnection, which reduces cell damage and costs; intelligent and…
A small-scale domestic air conditioner assembly line is designed to efficiently produce compact air conditioning units. It integrates various processes, including component preparation, processing, assembly, refrigerant charging, and comprehensive performance testing. The line ensures each unit meets strict quality standards through meticulous assembly procedures and rigorous testing protocols, covering aspects like electrical safety, noise levels,…